Omsatte mer än 99 procent av vätgasen
Konceptet man jobbat med kallas LOHC (reversibla flytande organiska vätgasbärare), och är inte nytt i sig. Utmaningen ligger i att hitta en så effektiv katalysator som möjligt, som kan utvinna vätet ur vätskan.
Systemet är tänkt att fungera genom att man har en vätska som är ”laddad” med vätgas. Vätskan pumpas igenom en fast katalysator som utvinner vätgasen. Denna kan användas i en bränslecell – som omvandlar kemiskt bränsle till el – medan den ”urladdade” vätskan fortsätter till en annan tank. Det enda utsläppet blir då vatten (förutom aceton som cirkuleras och återanvänds).
Denna urladdade vätska kan man sedan tömma ur på en mack för att sedan fylla på ny, laddad vätska. Den laddade vätskan får man sannolikt i så fall producera i stor skala, att jämföra med dagens raffinaderier.
– Vi omsatte mer än 99 procent av vätgasen som fanns i vätskan, berättar Ola Wendt.
Forskarna har också räknat på om det skulle kunna gå att använda bränslet till större fordon som bussar, lastbilar och flygplan.
– Med de stora tankar de har skulle man kunna komma nästan lika många mil som på en tank med diesel. Man skulle också få ut 50 procent mer energimängd jämfört med komprimerad vätgas säger Ola Wendt.
Vilka är utmaningarna?
De vätskor om använts är isopropanol (som är vanligt förekommande i exempelvis spolarvätska) och 4-metylpiperidin.
Låter det för bra för att vara sant? Visst kan det vara så och än länge återstår en hel del utmaningar. En är att katalysatorns livslängd är ganska begränsad. En annan är att iridium, som katalysatorn är baserad på, är en dyr metall.
– Men vi räknar med att man behöver ungefär två gram iridium till en bil. Det kan jämföras med dagens avgasrenings-katalysatorer, som innehåller cirka tre gram platina, palladium och rodium som också är dyra metaller, säger Ola Wendt.
Minskar behovet av fossilbaserad vätgas
Detta är alltså en teknisk lösning som baseras på grundforskning. Skulle man satsa på en färdig produkt ser Ola Wendt att ett koncept skulle kunna finnas klart på tio års sikt – förutsatt att det är ekonomiskt genomförbart och att intresse finns från samhällets sida.
Ett annat problem är hur vätgas framställs, och i dag är den mesta av produktionen inte klimatvänlig. Sedan ska vätgasen lagras och transporteras på ett bra sätt, vilket inte är helt enkelt idag. Dessutom finns det risker med att tanka komprimerad vätgas. Allt detta hoppas Lundaforskarna lösa med sin metod.
– 98 procent av all vätgas i dag är fossil och produceras från naturgas. Där är biprodukten koldioxid. Ur miljösynpunkt är premissen att framställa vätgas för stål, batterier och bränsle meningslös om det sker med fossil naturgas, säger Ola Wendt men berättar att det pågår mycket forskning för att kunna framställa så kallad grönt väte genom att vatten spjälkas i väte och syre med hjälp av förnybar el.
Kräver politiska beslut
Samtidigt tror Ola Wendt att det behövs politiska beslut om förnybara och klimatvänliga alternativ ska få ordentligt fotfäste.
– Det måste vara billigare och för det krävs politiska beslut. Förnybart har ingen möjlighet att tävla med något som man bara gräver upp ur marken, där i princip bara transporterna kostar, som är fallet med fossila bränslen.
Fakta: Vätgas och energi
Vätgas har hög energitäthet i förhållande till vikten, 33 kWh/kg (som jämförelse: 13 kWh/kg för bensin och <0,25 kWh/kg för litiumjonbatterier – vilket är anledningen till att elbilar har en begränsad räckvidd)
Det är dock svårt att lagra vätgas eftersom ämnet är en gas under atmosfäriska förhållanden och därför har en mycket låg volymtäthet. För att bevara de viktiga fördelarna med flytande bränslen som bensin och diesel, nämligen relativ säkerhet, snabb påfyllning, hög energitäthet och kompatibilitet med befintlig infrastruktur, har man föreslagit att vätgas lagras i flytande material. Dessa flytande organiska vätebärare (LOHC) måste passera genom en katalytisk reaktor där väte frigörs och leds till en bränslecell.
Så fungerar en katalysator
En katalysator är i grunden ett ämne som ökar en kemisk reaktions hastighet utan att själv förbrukas. Katalysatorer kan vara gasformiga, flytande eller fasta ämnen. I praktiken fungerar fasta ämnen bäst eftersom det reagerande ämnet då kan ledas över katalysatorn (i vätskeform eller gasfas) och på så vis kan processen göras kontinuerlig. I detta fall leds vätskan genom ett rör med fasta ämnen.